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Abstract—The inverse problems of electromagnetic nonde-
structive testing are often solved via the solution of several for-
ward problems. For the latter, precise numerical simulators are
available in most of the cases, but the associated computational
cost is usually high. Surrogate models –getting more and more
widespread in electromagnetics– might be promising alternatives
of heavy simulations. Traditionally, such surrogates are used to
replace the forward model. However, in this paper the direct use
of surrogate models for the solution of an inverse problem is
studied and illustrated by eddy-current testing examples.

Index Terms—Surrogate modeling; Kriging; Inverse problem;
Nondestructive evaluation; Eddy-current testing

I. Introduction

The electromagnetic nondestructive evaluation (ENDE) –the
characterization of in-material defects based on the measured
electromagnetic field– still remains a challenging issue. In-
dustrial applications need fast and reliable inversion methods,
whereas the numerical simulators of the involved electromag-
netic (EM) phenomena are computationally expensive.

Surrogate models are getting more and more widespread
alternatives of EM simulators [1]. Kriging –a stochastic func-
tion approximation technique (see, e.g. the recent overview
of [2])– is often used in such surrogate models. It has been
applied as an approximated forward simulator with success
for EM device optimization (e.g., [3], [4]) and the inverse
problem has also been addressed [5], [6]. However, inversion
can directly be performed –i.e., considering the measured data
as input and the defect description is the output– via surrogate
models, as proposed by, e.g., [7] using a neural network.

In this paper, a kriging-based surrogate modeling approach
is proposed for such direct solution of ENDE inverse prob-
lems. The kriging model is based on some pre-computed
(simulated) results, which are chosen by an adaptive strategy
in order to improve the performance of the yielded surrogate
model.

II. The proposed surrogate modeling approach

A. Inverse interpolation using a pre-computed database

Let us imagine an ENDE setup in which a defect is
described by a finite number of real parameters –collected
into the input vector x. The set of all conceivable defects
spans theinput space X. One can observe the functional output
dataZ(t). In eddy-current testing (ECT), thex input typically

consists in the geometrical parameters of the defect,Z(t) is
the impedance variation of the ECT probe at the positiont,
respectively. A numerical simulator for the studied configura-
tion is also assumed to be at hand, which can compute the
approximate output signalZ(t) for an arbitrary defect given
by the inputx.

The inverse problem roughly consists in determiningx
based on the knowledge ofZ(t). For this purpose, we propose
a kriging interpolation scheme. Let us assume thatn simula-
tions have been carried out, thus,n “samples” (corresponding
input-output data pairs) are stored in a database:

Dn = {(x1,Z1(t)) , (x2,Z2(t)) , . . . , (xn,Zn(t))} . (1)

The interpolation can then be written as:

x̂ ≈ In {Z(t)} ≡
n∑

i=1

λI
i (‖Z(t) − Zi(t)‖) xi, (2)

where x̂ is the approximate solution of the inverse problem
if the observation isZ(t), In denotes the “inverse operator”
based on then samples. The coefficientsλI

i are computed in
the stochastic framework of kriging (see, e.g., [2], [8]).

B. Adaptive generation of the database

The following adaptive sequential sampling scheme is pro-
posed to buildDn:

1) Choose a smalln number of “initial input samples” inX
by a classical space-filling design (e.g., full factorial [9])
and compute the corresponding outputs by the simulator
at hand.

2) The next, (n+1)th sample is inserted so that the precision
of (2) improves, i.e., the discrepancy between the real
and predicted inputs (x and x̂) decreases as much as
possible, all overX. To this end, the next sample is
added where this discrepancy is presumably maximal:

xn+1 = arg max
x∈X
‖x − In{Z(t)}‖ , (3)

whereZ(t) is the output signal corresponding tox. Since
this optimization problem is computationally expensive
due to the need forZ(t), the latter is also approximated
by kriging:

Z̃(t) =
n∑

i=1

λF
i (‖x − xi‖) Zi(t) (4)
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Figure 1: Cross-section of the studied ECT configuration. The
depthD is given in percentages of the plate thicknessd.

is used in (3) instead ofZ(t). The coefficients λF
i are

computed similarly toλI
i .

3) Zn+1(t) is computed and(xn+1,Zn+1(t)) is inserted toDn.
Increasen := n + 1 and go to step 2 until a stopping
criterion (e.g., upper limit forn) is met.

This scheme –using two successive kriging predictions per
iteration– yields a databaseDn which is adapted to the studied
problem and to the applied interpolator (2).

The generation of the database might be time-consuming
due to the forward simulations and the kriging operations
(estimation of model parameters), but this task is performed
only once. Then, the use of the surrogate model (2) is very
fast (the coefficientsλI

i (i = 1,2, . . . , n) are computed via the
solution of the system ofn + 1 linear equations).

III. Performance on a simple ECT example

The approach is illustrated by a simple eddy-current testing
(ECT) example. A homogeneous, non-magnetic conductive
plate is affected by a thin, rectangular-shaped crack. An air-
cored pancake type coil driven by time-harmonic current scans
above the plate (Fig. 1). The variation of the coil impedance
Z(t) is measured (t is the coil position over a rectangular
surface). The position and the orientation of the crack are
known, only its lengthL and depthD are enabled to vary.
For the numerical simulation, an integral formalism [10] is
used. Theinput is thenx = [L,D], the input space is defined
as 1 mm< L < 10 mm and 5 %< D < 90 %. The optimization
task (3) is solved via an exhaustive search, using a regular
37×18 grid on the (L,D) plane. The quality of the interpolation
(2) is evaluated via the interpolation error:

ε(x) =

√[(
L̂ − L

)
/L
]2
+
[(

D̂ − D
)
/D
]2
, (5)

where [̂L, D̂] are given by the interpolator (2), assuming that
Z(t) = Z(t), corresponding to [L,D]. A comparison of a
classical and the adaptive sampling (Fig. 2) shows a better
performance of the latter with respect to the former.

IV. Conclusion

The proposed kriging-based surrogate modeling approach
shows good performance in the fast solution of inverse prob-
lems of the preliminary ECT examples. The future research
will consider the effect of the noise on the observations. Fur-
ther numerical studies (preliminary results have been obtained
using 4 parameters) will be presented in an extended paper.
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Figure 2: Interpolation errorε(x) (colormap, evaluated in a
37×18 grid) and input samplesxi. Top: classical sampling with
36 samples. Bottom: adaptive sampling: 9 initial (triangles) +
27 sequentially added samples.
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