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Abstract—The inverse problems of electromagnetic nonde- co

nsists in the geometrical parameters of the defggt) is

structive testing are often solved via the solution of several fer the impedance variation of the ECT probe at the position

ward problems. For the latter, precise nhumerical simulators are
available in most of the cases, but the associated computational ..
cost is usually high. Surrogate models —getting more and more tio
widespread in electromagnetics— might be promising alternatives 2P
of heavy simulations. Traditionally, such surrogates are used to by
replace the forward model. However, in this paper the direct use
of surrogate models for the solution of an inverse problem is
studied and illustrated by eddy-current testing examples.

Index Terms—Surrogate modeling; Kriging; Inverse problem;

Nondestructive evaluation; Eddy-current testing tio

respectively. A numerical simulator for the studied confégu

n is also assumed to be at hand, which can compute the
proximate output signal(t) for an arbitrary defect given
the inputx.

The inverse problem roughly consists in determinixg
based on the knowledge @(t). For this purpose, we propose
a kriging interpolation scheme. Let us assume thatmula-

ns have been carried out, thus{samples” (corresponding

input-output data pairs) are stored in a database:

|. INTRODUCTION

The electromagnetic nondestructive evaluation (ENDEg —t
characterization of in-material defects based on the nmedsu
electromagnetic field— still remains a challenging issue. |
dustrial applications need fast and reliable inversionhoes,
whereas the numerical simulators of the involved electggma
netic (EM) phenomena are computationally expensive.

Surrogate models are getting more and more widespr
alternatives of EM simulators [1]. Kriging —a stochastiaidu
tion approximation technique (see, e.g. the recent owervi
of [2])- is often used in such surrogate models. It has begn

Dn = {(x1, Z1(1)), (X2, Z2(1) . ..., (X, Za())}. (1)
i1‘he interpolation can then be written as:
X~ InlZWM) = Y A (120 - 2O X, )
i—1

whereX is the approximate solution of the inverse problem
dbdhe observation isZ(t), 7, denotes the “inverse operator”
based on then samples. The cdicients ] are computed in
dhe stochastic framework of kriging (see, e.g., [2], [8]).

Adaptive generation of the database

applied as an approximated forward simulator with successp o following adaptive sequential sampling scheme is pro-
for EM device optimization (e.g., [3], [4]) and the inversepoSed to buildD,:

problem has also been addressed [5], [6]. However, inversio
can directly be performed —i.e., considering the measuatal d
as input and the defect description is the output— via sateg
models, as proposed by, e.g., [7] using a neural network.

In this paper, a kriging-based surrogate modeling approac
is proposed for such direct solution of ENDE inverse prob-
lems. The kriging model is based on some pre-computed
(simulated) results, which are chosen by an adaptive girate
in order to improve the performance of the yielded surrogate
model.

Il. THE PROPOSED SURROGATE MODELING APPROACH
A. Inverse interpolation using a pre-computed database

Let us imagine an ENDE setup in which a defect is
described by a finite number of real parameters —collected
into the input vector x. The set of all conceivable defects
spans thenput space X. One can observe the functional output
dataZ(t). In eddy-current testing (ECT), theinput typically

)

1) Choose a smati number of “initial input samples” ik

by a classical space-filling design (e.g., full factorid))[9
and compute the corresponding outputs by the simulator
at hand.

The next, (+1)th sample is inserted so that the precision
of (2) improves, i.e., the discrepancy between the real
and predicted inputsx(andX) decreases as much as
possible, all overX. To this end, the next sample is
added where this discrepancy is presumably maximal:

®3)

whereZ(t) is the output signal correspondingxoSince
this optimization problem is computationally expensive
due to the need foZ(t), the latter is also approximated
by kriging:

Xni1 = argmaix - ZnlZW)l

2@ = > a5 (Ix = xil) Zi(t) @)
i=1



crack

)
.

Figure 1. Cross-section of the studied ECT configuratiore Th
depthD is given in percentages of the plate thicknéss

d

is used in (3) instead oZ(t). The codiicients A" are
computed similarly tot!.

3) Zn1(t) is computed andXn, 1, Zn.1(t)) is inserted tdDy,.
Increasen := n+ 1 and go to step 2 until a stopping
criterion (e.g., upper limit fon) is met.

This scheme —using two successive kriging predictions per
iteration— yields a databad#, which is adapted to the studied
problem and to the applied interpolator (2).

The generation of the database might be time-consuming
due to the forward simulations and the kriging operations
(estimation of model parameters), but this task is performe
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only once. Then, the use of the surrogate model (2) is vejgure 2: Interpolation errog(x) (colormap, evaluated in a
fast (the coﬁicientsﬂi' (i=1,2...,n) are computed via the 37x18 grid) and input samples. Top: classical sampling with

solution of the system ofi + 1 linear equations).

36 samples. Bottom: adaptive sampling: 9 initial (triasyle

27 sequentially added samples.

I1l. PERFORMANCE ON A SIMPLE ECT EXAMPLE

The approach is illustrated by a simple eddy-current tgstin
(ECT) example. A homogeneous, non-magnetic conductive

ACKNOWLEDGEMENTS

plate is dfected by a thin, rectangular-shaped crack. An air- This research is partially supported by the French-
cored pancake type coil driven by time-harmonic currenbscaHungarian Bilateral Intergovernmental S&T CooperatioR{F
above the plate (Fig. 1). The variation of the coil impedancg2008), by the Hungarian Development ProgramaMOP-
Z(t) is measuredt(is the coil position over a rectangular4.2.¥B-091/KMR-2010-0002, and by DIGITEO cluster's
surface). The position and the orientation of the crack ap&oject.

known, only its lengthL and depthD are enabled to vary.
For the numerical simulation, an integral formalism [10] is
used. Theinput is thenx = [L, D], the input space is defined 1]
as Imm< L <10mm and 5% D < 90 %. The optimization [
task (3) is solved via an exhaustive search, using a regular
37x18 grid on the [, D) plane. The quality of the interpolation 3]
(2) is evaluated via the interpolation error:

£(x) = \/[(E— L)/L]’ +[(©- D) /D]’

where L, D] are given by the interpolator (2), assuming that

Z(t) = Z(t), corresponding tol,D]. A comparison of a [6]
classical and the adaptive sampling (Fig. 2) shows a better
performance of the latter with respect to the former. 7]

(4]

®)
[5]

IV. ConcLusion -
The proposed kriging-based surrogate modeling approach

shows good performance in the fast solution of inverse proh:
. 9]
lems of the preliminary ECT examples. The future researc
will consider the &ect of the noise on the observations. Fui0]
ther numerical studies (preliminary results have beeniodta
using 4 parameters) will be presented in an extended paper.
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